3.7.4 \(\int \frac {(d \sec (e+f x))^{5/2}}{a+b \tan (e+f x)} \, dx\) [604]

3.7.4.1 Optimal result
3.7.4.2 Mathematica [C] (verified)
3.7.4.3 Rubi [A] (warning: unable to verify)
3.7.4.4 Maple [B] (warning: unable to verify)
3.7.4.5 Fricas [F]
3.7.4.6 Sympy [F]
3.7.4.7 Maxima [F]
3.7.4.8 Giac [F]
3.7.4.9 Mupad [F(-1)]

3.7.4.1 Optimal result

Integrand size = 25, antiderivative size = 396 \[ \int \frac {(d \sec (e+f x))^{5/2}}{a+b \tan (e+f x)} \, dx=\frac {2 d^2 \sqrt {d \sec (e+f x)}}{b f}-\frac {\sqrt [4]{a^2+b^2} d^2 \arctan \left (\frac {\sqrt {b} \sqrt [4]{\sec ^2(e+f x)}}{\sqrt [4]{a^2+b^2}}\right ) \sqrt {d \sec (e+f x)}}{b^{3/2} f \sqrt [4]{\sec ^2(e+f x)}}-\frac {\sqrt [4]{a^2+b^2} d^2 \text {arctanh}\left (\frac {\sqrt {b} \sqrt [4]{\sec ^2(e+f x)}}{\sqrt [4]{a^2+b^2}}\right ) \sqrt {d \sec (e+f x)}}{b^{3/2} f \sqrt [4]{\sec ^2(e+f x)}}-\frac {2 a d^2 \operatorname {EllipticF}\left (\frac {1}{2} \arctan (\tan (e+f x)),2\right ) \sqrt {d \sec (e+f x)}}{b^2 f \sqrt [4]{\sec ^2(e+f x)}}+\frac {a d^2 \cot (e+f x) \operatorname {EllipticPi}\left (-\frac {b}{\sqrt {a^2+b^2}},\arcsin \left (\sqrt [4]{\sec ^2(e+f x)}\right ),-1\right ) \sqrt {d \sec (e+f x)} \sqrt {-\tan ^2(e+f x)}}{b^2 f \sqrt [4]{\sec ^2(e+f x)}}+\frac {a d^2 \cot (e+f x) \operatorname {EllipticPi}\left (\frac {b}{\sqrt {a^2+b^2}},\arcsin \left (\sqrt [4]{\sec ^2(e+f x)}\right ),-1\right ) \sqrt {d \sec (e+f x)} \sqrt {-\tan ^2(e+f x)}}{b^2 f \sqrt [4]{\sec ^2(e+f x)}} \]

output
2*d^2*(d*sec(f*x+e))^(1/2)/b/f-(a^2+b^2)^(1/4)*d^2*arctan((sec(f*x+e)^2)^( 
1/4)*b^(1/2)/(a^2+b^2)^(1/4))*(d*sec(f*x+e))^(1/2)/b^(3/2)/f/(sec(f*x+e)^2 
)^(1/4)-(a^2+b^2)^(1/4)*d^2*arctanh((sec(f*x+e)^2)^(1/4)*b^(1/2)/(a^2+b^2) 
^(1/4))*(d*sec(f*x+e))^(1/2)/b^(3/2)/f/(sec(f*x+e)^2)^(1/4)-2*a*d^2*(cos(1 
/2*arctan(tan(f*x+e)))^2)^(1/2)/cos(1/2*arctan(tan(f*x+e)))*EllipticF(sin( 
1/2*arctan(tan(f*x+e))),2^(1/2))*(d*sec(f*x+e))^(1/2)/b^2/f/(sec(f*x+e)^2) 
^(1/4)+a*d^2*cot(f*x+e)*EllipticPi((sec(f*x+e)^2)^(1/4),-b/(a^2+b^2)^(1/2) 
,I)*(d*sec(f*x+e))^(1/2)*(-tan(f*x+e)^2)^(1/2)/b^2/f/(sec(f*x+e)^2)^(1/4)+ 
a*d^2*cot(f*x+e)*EllipticPi((sec(f*x+e)^2)^(1/4),b/(a^2+b^2)^(1/2),I)*(d*s 
ec(f*x+e))^(1/2)*(-tan(f*x+e)^2)^(1/2)/b^2/f/(sec(f*x+e)^2)^(1/4)
 
3.7.4.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 27.35 (sec) , antiderivative size = 290, normalized size of antiderivative = 0.73 \[ \int \frac {(d \sec (e+f x))^{5/2}}{a+b \tan (e+f x)} \, dx=\frac {d^2 \cot (e+f x) \sqrt {d \sec (e+f x)} \left (-\sqrt {b} \sqrt [4]{a^2+b^2} \arctan \left (\frac {\sqrt {b} \sqrt [4]{\sec ^2(e+f x)}}{\sqrt [4]{a^2+b^2}}\right ) \tan (e+f x)-\sqrt {b} \sqrt [4]{a^2+b^2} \text {arctanh}\left (\frac {\sqrt {b} \sqrt [4]{\sec ^2(e+f x)}}{\sqrt [4]{a^2+b^2}}\right ) \tan (e+f x)+2 b \sqrt [4]{\sec ^2(e+f x)} \tan (e+f x)-a \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {3}{2},-\tan ^2(e+f x)\right ) \tan ^2(e+f x)+a \operatorname {EllipticPi}\left (-\frac {b}{\sqrt {a^2+b^2}},\arcsin \left (\sqrt [4]{\sec ^2(e+f x)}\right ),-1\right ) \sqrt {-\tan ^2(e+f x)}+a \operatorname {EllipticPi}\left (\frac {b}{\sqrt {a^2+b^2}},\arcsin \left (\sqrt [4]{\sec ^2(e+f x)}\right ),-1\right ) \sqrt {-\tan ^2(e+f x)}\right )}{b^2 f \sqrt [4]{\sec ^2(e+f x)}} \]

input
Integrate[(d*Sec[e + f*x])^(5/2)/(a + b*Tan[e + f*x]),x]
 
output
(d^2*Cot[e + f*x]*Sqrt[d*Sec[e + f*x]]*(-(Sqrt[b]*(a^2 + b^2)^(1/4)*ArcTan 
[(Sqrt[b]*(Sec[e + f*x]^2)^(1/4))/(a^2 + b^2)^(1/4)]*Tan[e + f*x]) - Sqrt[ 
b]*(a^2 + b^2)^(1/4)*ArcTanh[(Sqrt[b]*(Sec[e + f*x]^2)^(1/4))/(a^2 + b^2)^ 
(1/4)]*Tan[e + f*x] + 2*b*(Sec[e + f*x]^2)^(1/4)*Tan[e + f*x] - a*Hypergeo 
metric2F1[1/2, 3/4, 3/2, -Tan[e + f*x]^2]*Tan[e + f*x]^2 + a*EllipticPi[-( 
b/Sqrt[a^2 + b^2]), ArcSin[(Sec[e + f*x]^2)^(1/4)], -1]*Sqrt[-Tan[e + f*x] 
^2] + a*EllipticPi[b/Sqrt[a^2 + b^2], ArcSin[(Sec[e + f*x]^2)^(1/4)], -1]* 
Sqrt[-Tan[e + f*x]^2]))/(b^2*f*(Sec[e + f*x]^2)^(1/4))
 
3.7.4.3 Rubi [A] (warning: unable to verify)

Time = 0.73 (sec) , antiderivative size = 300, normalized size of antiderivative = 0.76, number of steps used = 19, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.720, Rules used = {3042, 3994, 493, 27, 719, 229, 504, 312, 118, 25, 353, 73, 756, 218, 221, 925, 1537, 412}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(d \sec (e+f x))^{5/2}}{a+b \tan (e+f x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(d \sec (e+f x))^{5/2}}{a+b \tan (e+f x)}dx\)

\(\Big \downarrow \) 3994

\(\displaystyle \frac {d^2 \sqrt {d \sec (e+f x)} \int \frac {\sqrt [4]{\tan ^2(e+f x)+1}}{a+b \tan (e+f x)}d(b \tan (e+f x))}{b f \sqrt [4]{\sec ^2(e+f x)}}\)

\(\Big \downarrow \) 493

\(\displaystyle \frac {d^2 \sqrt {d \sec (e+f x)} \left (\int \frac {b^2-a b \tan (e+f x)}{b^2 (a+b \tan (e+f x)) \left (\tan ^2(e+f x)+1\right )^{3/4}}d(b \tan (e+f x))+2 \sqrt [4]{\tan ^2(e+f x)+1}\right )}{b f \sqrt [4]{\sec ^2(e+f x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {d^2 \sqrt {d \sec (e+f x)} \left (\frac {\int \frac {b^2-a b \tan (e+f x)}{(a+b \tan (e+f x)) \left (\tan ^2(e+f x)+1\right )^{3/4}}d(b \tan (e+f x))}{b^2}+2 \sqrt [4]{\tan ^2(e+f x)+1}\right )}{b f \sqrt [4]{\sec ^2(e+f x)}}\)

\(\Big \downarrow \) 719

\(\displaystyle \frac {d^2 \sqrt {d \sec (e+f x)} \left (\frac {\left (a^2+b^2\right ) \int \frac {1}{(a+b \tan (e+f x)) \left (\tan ^2(e+f x)+1\right )^{3/4}}d(b \tan (e+f x))-a \int \frac {1}{\left (\tan ^2(e+f x)+1\right )^{3/4}}d(b \tan (e+f x))}{b^2}+2 \sqrt [4]{\tan ^2(e+f x)+1}\right )}{b f \sqrt [4]{\sec ^2(e+f x)}}\)

\(\Big \downarrow \) 229

\(\displaystyle \frac {d^2 \sqrt {d \sec (e+f x)} \left (\frac {\left (a^2+b^2\right ) \int \frac {1}{(a+b \tan (e+f x)) \left (\tan ^2(e+f x)+1\right )^{3/4}}d(b \tan (e+f x))-2 a b \operatorname {EllipticF}\left (\frac {1}{2} \arctan (\tan (e+f x)),2\right )}{b^2}+2 \sqrt [4]{\tan ^2(e+f x)+1}\right )}{b f \sqrt [4]{\sec ^2(e+f x)}}\)

\(\Big \downarrow \) 504

\(\displaystyle \frac {d^2 \sqrt {d \sec (e+f x)} \left (\frac {\left (a^2+b^2\right ) \left (a \int \frac {1}{\left (\tan ^2(e+f x)+1\right )^{3/4} \left (a^2-b^2 \tan ^2(e+f x)\right )}d(b \tan (e+f x))-\int \frac {b \tan (e+f x)}{\left (\tan ^2(e+f x)+1\right )^{3/4} \left (a^2-b^2 \tan ^2(e+f x)\right )}d(b \tan (e+f x))\right )-2 a b \operatorname {EllipticF}\left (\frac {1}{2} \arctan (\tan (e+f x)),2\right )}{b^2}+2 \sqrt [4]{\tan ^2(e+f x)+1}\right )}{b f \sqrt [4]{\sec ^2(e+f x)}}\)

\(\Big \downarrow \) 312

\(\displaystyle \frac {d^2 \sqrt {d \sec (e+f x)} \left (\frac {\left (a^2+b^2\right ) \left (\frac {a \sqrt {-\tan ^2(e+f x)} \cot (e+f x) \int \frac {1}{\sqrt {-\frac {\tan (e+f x)}{b}} \left (\frac {\tan (e+f x)}{b}+1\right )^{3/4} \left (a^2-b^2 \tan ^2(e+f x)\right )}d\left (b^2 \tan ^2(e+f x)\right )}{2 b}-\int \frac {b \tan (e+f x)}{\left (\tan ^2(e+f x)+1\right )^{3/4} \left (a^2-b^2 \tan ^2(e+f x)\right )}d(b \tan (e+f x))\right )-2 a b \operatorname {EllipticF}\left (\frac {1}{2} \arctan (\tan (e+f x)),2\right )}{b^2}+2 \sqrt [4]{\tan ^2(e+f x)+1}\right )}{b f \sqrt [4]{\sec ^2(e+f x)}}\)

\(\Big \downarrow \) 118

\(\displaystyle \frac {d^2 \sqrt {d \sec (e+f x)} \left (\frac {\left (a^2+b^2\right ) \left (-\int \frac {b \tan (e+f x)}{\left (\tan ^2(e+f x)+1\right )^{3/4} \left (a^2-b^2 \tan ^2(e+f x)\right )}d(b \tan (e+f x))-\frac {2 a \sqrt {-\tan ^2(e+f x)} \cot (e+f x) \int -\frac {1}{\sqrt {1-b^4 \tan ^4(e+f x)} \left (-b^4 \tan ^4(e+f x)+\frac {a^2}{b^2}+1\right )}d\sqrt [4]{\frac {\tan (e+f x)}{b}+1}}{b}\right )-2 a b \operatorname {EllipticF}\left (\frac {1}{2} \arctan (\tan (e+f x)),2\right )}{b^2}+2 \sqrt [4]{\tan ^2(e+f x)+1}\right )}{b f \sqrt [4]{\sec ^2(e+f x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {d^2 \sqrt {d \sec (e+f x)} \left (\frac {\left (a^2+b^2\right ) \left (\frac {2 a \sqrt {-\tan ^2(e+f x)} \cot (e+f x) \int \frac {1}{\sqrt {1-b^4 \tan ^4(e+f x)} \left (-b^4 \tan ^4(e+f x)+\frac {a^2}{b^2}+1\right )}d\sqrt [4]{\frac {\tan (e+f x)}{b}+1}}{b}-\int \frac {b \tan (e+f x)}{\left (\tan ^2(e+f x)+1\right )^{3/4} \left (a^2-b^2 \tan ^2(e+f x)\right )}d(b \tan (e+f x))\right )-2 a b \operatorname {EllipticF}\left (\frac {1}{2} \arctan (\tan (e+f x)),2\right )}{b^2}+2 \sqrt [4]{\tan ^2(e+f x)+1}\right )}{b f \sqrt [4]{\sec ^2(e+f x)}}\)

\(\Big \downarrow \) 353

\(\displaystyle \frac {d^2 \sqrt {d \sec (e+f x)} \left (\frac {\left (a^2+b^2\right ) \left (\frac {2 a \sqrt {-\tan ^2(e+f x)} \cot (e+f x) \int \frac {1}{\sqrt {1-b^4 \tan ^4(e+f x)} \left (-b^4 \tan ^4(e+f x)+\frac {a^2}{b^2}+1\right )}d\sqrt [4]{\frac {\tan (e+f x)}{b}+1}}{b}-\frac {1}{2} \int \frac {1}{\left (\frac {\tan (e+f x)}{b}+1\right )^{3/4} \left (a^2-b^2 \tan ^2(e+f x)\right )}d\left (b^2 \tan ^2(e+f x)\right )\right )-2 a b \operatorname {EllipticF}\left (\frac {1}{2} \arctan (\tan (e+f x)),2\right )}{b^2}+2 \sqrt [4]{\tan ^2(e+f x)+1}\right )}{b f \sqrt [4]{\sec ^2(e+f x)}}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {d^2 \sqrt {d \sec (e+f x)} \left (\frac {\left (a^2+b^2\right ) \left (\frac {2 a \sqrt {-\tan ^2(e+f x)} \cot (e+f x) \int \frac {1}{\sqrt {1-b^4 \tan ^4(e+f x)} \left (-b^4 \tan ^4(e+f x)+\frac {a^2}{b^2}+1\right )}d\sqrt [4]{\frac {\tan (e+f x)}{b}+1}}{b}-2 b^2 \int \frac {1}{-\tan ^4(e+f x) b^6+b^2+a^2}d\sqrt [4]{\frac {\tan (e+f x)}{b}+1}\right )-2 a b \operatorname {EllipticF}\left (\frac {1}{2} \arctan (\tan (e+f x)),2\right )}{b^2}+2 \sqrt [4]{\tan ^2(e+f x)+1}\right )}{b f \sqrt [4]{\sec ^2(e+f x)}}\)

\(\Big \downarrow \) 756

\(\displaystyle \frac {d^2 \sqrt {d \sec (e+f x)} \left (\frac {\left (a^2+b^2\right ) \left (\frac {2 a \sqrt {-\tan ^2(e+f x)} \cot (e+f x) \int \frac {1}{\sqrt {1-b^4 \tan ^4(e+f x)} \left (-b^4 \tan ^4(e+f x)+\frac {a^2}{b^2}+1\right )}d\sqrt [4]{\frac {\tan (e+f x)}{b}+1}}{b}-2 b^2 \left (\frac {\int \frac {1}{\sqrt {a^2+b^2}-b^3 \tan ^2(e+f x)}d\sqrt [4]{\frac {\tan (e+f x)}{b}+1}}{2 \sqrt {a^2+b^2}}+\frac {\int \frac {1}{\tan ^2(e+f x) b^3+\sqrt {a^2+b^2}}d\sqrt [4]{\frac {\tan (e+f x)}{b}+1}}{2 \sqrt {a^2+b^2}}\right )\right )-2 a b \operatorname {EllipticF}\left (\frac {1}{2} \arctan (\tan (e+f x)),2\right )}{b^2}+2 \sqrt [4]{\tan ^2(e+f x)+1}\right )}{b f \sqrt [4]{\sec ^2(e+f x)}}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {d^2 \sqrt {d \sec (e+f x)} \left (\frac {\left (a^2+b^2\right ) \left (\frac {2 a \sqrt {-\tan ^2(e+f x)} \cot (e+f x) \int \frac {1}{\sqrt {1-b^4 \tan ^4(e+f x)} \left (-b^4 \tan ^4(e+f x)+\frac {a^2}{b^2}+1\right )}d\sqrt [4]{\frac {\tan (e+f x)}{b}+1}}{b}-2 b^2 \left (\frac {\int \frac {1}{\sqrt {a^2+b^2}-b^3 \tan ^2(e+f x)}d\sqrt [4]{\frac {\tan (e+f x)}{b}+1}}{2 \sqrt {a^2+b^2}}+\frac {\arctan \left (\frac {b^{3/2} \tan (e+f x)}{\sqrt [4]{a^2+b^2}}\right )}{2 \sqrt {b} \left (a^2+b^2\right )^{3/4}}\right )\right )-2 a b \operatorname {EllipticF}\left (\frac {1}{2} \arctan (\tan (e+f x)),2\right )}{b^2}+2 \sqrt [4]{\tan ^2(e+f x)+1}\right )}{b f \sqrt [4]{\sec ^2(e+f x)}}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {d^2 \sqrt {d \sec (e+f x)} \left (\frac {\left (a^2+b^2\right ) \left (\frac {2 a \sqrt {-\tan ^2(e+f x)} \cot (e+f x) \int \frac {1}{\sqrt {1-b^4 \tan ^4(e+f x)} \left (-b^4 \tan ^4(e+f x)+\frac {a^2}{b^2}+1\right )}d\sqrt [4]{\frac {\tan (e+f x)}{b}+1}}{b}-2 b^2 \left (\frac {\arctan \left (\frac {b^{3/2} \tan (e+f x)}{\sqrt [4]{a^2+b^2}}\right )}{2 \sqrt {b} \left (a^2+b^2\right )^{3/4}}+\frac {\text {arctanh}\left (\frac {b^{3/2} \tan (e+f x)}{\sqrt [4]{a^2+b^2}}\right )}{2 \sqrt {b} \left (a^2+b^2\right )^{3/4}}\right )\right )-2 a b \operatorname {EllipticF}\left (\frac {1}{2} \arctan (\tan (e+f x)),2\right )}{b^2}+2 \sqrt [4]{\tan ^2(e+f x)+1}\right )}{b f \sqrt [4]{\sec ^2(e+f x)}}\)

\(\Big \downarrow \) 925

\(\displaystyle \frac {d^2 \sqrt {d \sec (e+f x)} \left (\frac {\left (a^2+b^2\right ) \left (-\frac {2 a \sqrt {-\tan ^2(e+f x)} \cot (e+f x) \left (-\frac {b^2 \int \frac {1}{\left (1-\frac {b^3 \tan ^2(e+f x)}{\sqrt {a^2+b^2}}\right ) \sqrt {1-b^4 \tan ^4(e+f x)}}d\sqrt [4]{\frac {\tan (e+f x)}{b}+1}}{2 \left (a^2+b^2\right )}-\frac {b^2 \int \frac {1}{\left (\frac {\tan ^2(e+f x) b^3}{\sqrt {a^2+b^2}}+1\right ) \sqrt {1-b^4 \tan ^4(e+f x)}}d\sqrt [4]{\frac {\tan (e+f x)}{b}+1}}{2 \left (a^2+b^2\right )}\right )}{b}-2 b^2 \left (\frac {\arctan \left (\frac {b^{3/2} \tan (e+f x)}{\sqrt [4]{a^2+b^2}}\right )}{2 \sqrt {b} \left (a^2+b^2\right )^{3/4}}+\frac {\text {arctanh}\left (\frac {b^{3/2} \tan (e+f x)}{\sqrt [4]{a^2+b^2}}\right )}{2 \sqrt {b} \left (a^2+b^2\right )^{3/4}}\right )\right )-2 a b \operatorname {EllipticF}\left (\frac {1}{2} \arctan (\tan (e+f x)),2\right )}{b^2}+2 \sqrt [4]{\tan ^2(e+f x)+1}\right )}{b f \sqrt [4]{\sec ^2(e+f x)}}\)

\(\Big \downarrow \) 1537

\(\displaystyle \frac {d^2 \sqrt {d \sec (e+f x)} \left (\frac {\left (a^2+b^2\right ) \left (-\frac {2 a \sqrt {-\tan ^2(e+f x)} \cot (e+f x) \left (-\frac {b^2 \int \frac {1}{\left (1-\frac {b^3 \tan ^2(e+f x)}{\sqrt {a^2+b^2}}\right ) \sqrt {1-\sqrt [4]{\frac {\tan (e+f x)}{b}+1}} \sqrt {\sqrt [4]{\frac {\tan (e+f x)}{b}+1}+1}}d\sqrt [4]{\frac {\tan (e+f x)}{b}+1}}{2 \left (a^2+b^2\right )}-\frac {b^2 \int \frac {1}{\left (\frac {\tan ^2(e+f x) b^3}{\sqrt {a^2+b^2}}+1\right ) \sqrt {1-\sqrt [4]{\frac {\tan (e+f x)}{b}+1}} \sqrt {\sqrt [4]{\frac {\tan (e+f x)}{b}+1}+1}}d\sqrt [4]{\frac {\tan (e+f x)}{b}+1}}{2 \left (a^2+b^2\right )}\right )}{b}-2 b^2 \left (\frac {\arctan \left (\frac {b^{3/2} \tan (e+f x)}{\sqrt [4]{a^2+b^2}}\right )}{2 \sqrt {b} \left (a^2+b^2\right )^{3/4}}+\frac {\text {arctanh}\left (\frac {b^{3/2} \tan (e+f x)}{\sqrt [4]{a^2+b^2}}\right )}{2 \sqrt {b} \left (a^2+b^2\right )^{3/4}}\right )\right )-2 a b \operatorname {EllipticF}\left (\frac {1}{2} \arctan (\tan (e+f x)),2\right )}{b^2}+2 \sqrt [4]{\tan ^2(e+f x)+1}\right )}{b f \sqrt [4]{\sec ^2(e+f x)}}\)

\(\Big \downarrow \) 412

\(\displaystyle \frac {d^2 \sqrt {d \sec (e+f x)} \left (\frac {\left (a^2+b^2\right ) \left (-\frac {2 a \sqrt {-\tan ^2(e+f x)} \cot (e+f x) \left (-\frac {b^2 \operatorname {EllipticPi}\left (-\frac {b}{\sqrt {a^2+b^2}},\arcsin \left (\sqrt [4]{\frac {\tan (e+f x)}{b}+1}\right ),-1\right )}{2 \left (a^2+b^2\right )}-\frac {b^2 \operatorname {EllipticPi}\left (\frac {b}{\sqrt {a^2+b^2}},\arcsin \left (\sqrt [4]{\frac {\tan (e+f x)}{b}+1}\right ),-1\right )}{2 \left (a^2+b^2\right )}\right )}{b}-2 b^2 \left (\frac {\arctan \left (\frac {b^{3/2} \tan (e+f x)}{\sqrt [4]{a^2+b^2}}\right )}{2 \sqrt {b} \left (a^2+b^2\right )^{3/4}}+\frac {\text {arctanh}\left (\frac {b^{3/2} \tan (e+f x)}{\sqrt [4]{a^2+b^2}}\right )}{2 \sqrt {b} \left (a^2+b^2\right )^{3/4}}\right )\right )-2 a b \operatorname {EllipticF}\left (\frac {1}{2} \arctan (\tan (e+f x)),2\right )}{b^2}+2 \sqrt [4]{\tan ^2(e+f x)+1}\right )}{b f \sqrt [4]{\sec ^2(e+f x)}}\)

input
Int[(d*Sec[e + f*x])^(5/2)/(a + b*Tan[e + f*x]),x]
 
output
(d^2*Sqrt[d*Sec[e + f*x]]*(2*(1 + Tan[e + f*x]^2)^(1/4) + (-2*a*b*Elliptic 
F[ArcTan[Tan[e + f*x]]/2, 2] + (a^2 + b^2)*(-2*b^2*(ArcTan[(b^(3/2)*Tan[e 
+ f*x])/(a^2 + b^2)^(1/4)]/(2*Sqrt[b]*(a^2 + b^2)^(3/4)) + ArcTanh[(b^(3/2 
)*Tan[e + f*x])/(a^2 + b^2)^(1/4)]/(2*Sqrt[b]*(a^2 + b^2)^(3/4))) - (2*a*C 
ot[e + f*x]*(-1/2*(b^2*EllipticPi[-(b/Sqrt[a^2 + b^2]), ArcSin[(1 + Tan[e 
+ f*x]/b)^(1/4)], -1])/(a^2 + b^2) - (b^2*EllipticPi[b/Sqrt[a^2 + b^2], Ar 
cSin[(1 + Tan[e + f*x]/b)^(1/4)], -1])/(2*(a^2 + b^2)))*Sqrt[-Tan[e + f*x] 
^2])/b))/b^2))/(b*f*(Sec[e + f*x]^2)^(1/4))
 

3.7.4.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 118
Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^( 
3/4)), x_] :> Simp[-4   Subst[Int[1/((b*e - a*f - b*x^4)*Sqrt[c - d*(e/f) + 
 d*(x^4/f)]), x], x, (e + f*x)^(1/4)], x] /; FreeQ[{a, b, c, d, e, f}, x] & 
& GtQ[-f/(d*e - c*f), 0]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 229
Int[((a_) + (b_.)*(x_)^2)^(-3/4), x_Symbol] :> Simp[(2/(a^(3/4)*Rt[b/a, 2]) 
)*EllipticF[(1/2)*ArcTan[Rt[b/a, 2]*x], 2], x] /; FreeQ[{a, b}, x] && GtQ[a 
, 0] && PosQ[b/a]
 

rule 312
Int[1/(((a_) + (b_.)*(x_)^2)^(3/4)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Sim 
p[Sqrt[(-b)*(x^2/a)]/(2*x)   Subst[Int[1/(Sqrt[(-b)*(x/a)]*(a + b*x)^(3/4)* 
(c + d*x)), x], x, x^2], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]
 

rule 353
Int[(x_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_Symbol] 
 :> Simp[1/2   Subst[Int[(a + b*x)^p*(c + d*x)^q, x], x, x^2], x] /; FreeQ[ 
{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0]
 

rule 412
Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x 
_)^2]), x_Symbol] :> Simp[(1/(a*Sqrt[c]*Sqrt[e]*Rt[-d/c, 2]))*EllipticPi[b* 
(c/(a*d)), ArcSin[Rt[-d/c, 2]*x], c*(f/(d*e))], x] /; FreeQ[{a, b, c, d, e, 
 f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && S 
implerSqrtQ[-f/e, -d/c])
 

rule 493
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[ 
(c + d*x)^(n + 1)*((a + b*x^2)^p/(d*(n + 2*p + 1))), x] + Simp[2*(p/(d*(n + 
 2*p + 1)))   Int[(c + d*x)^n*(a + b*x^2)^(p - 1)*(a*d - b*c*x), x], x] /; 
FreeQ[{a, b, c, d, n}, x] && GtQ[p, 0] && NeQ[n + 2*p + 1, 0] && ( !Rationa 
lQ[n] || LtQ[n, 1]) &&  !ILtQ[n + 2*p, 0] && IntQuadraticQ[a, 0, b, c, d, n 
, p, x]
 

rule 504
Int[((a_) + (b_.)*(x_)^2)^(p_)/((c_) + (d_.)*(x_)), x_Symbol] :> Simp[c   I 
nt[(a + b*x^2)^p/(c^2 - d^2*x^2), x], x] - Simp[d   Int[x*((a + b*x^2)^p/(c 
^2 - d^2*x^2)), x], x] /; FreeQ[{a, b, c, d, p}, x]
 

rule 719
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p 
_.), x_Symbol] :> Simp[g/e   Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] + 
Simp[(e*f - d*g)/e   Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, 
d, e, f, g, m, p}, x] &&  !IGtQ[m, 0]
 

rule 756
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2 
]], s = Denominator[Rt[-a/b, 2]]}, Simp[r/(2*a)   Int[1/(r - s*x^2), x], x] 
 + Simp[r/(2*a)   Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ[a 
/b, 0]
 

rule 925
Int[1/(Sqrt[(a_) + (b_.)*(x_)^4]*((c_) + (d_.)*(x_)^4)), x_Symbol] :> Simp[ 
1/(2*c)   Int[1/(Sqrt[a + b*x^4]*(1 - Rt[-d/c, 2]*x^2)), x], x] + Simp[1/(2 
*c)   Int[1/(Sqrt[a + b*x^4]*(1 + Rt[-d/c, 2]*x^2)), x], x] /; FreeQ[{a, b, 
 c, d}, x] && NeQ[b*c - a*d, 0]
 

rule 1537
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[ 
{q = Rt[(-a)*c, 2]}, Simp[Sqrt[-c]   Int[1/((d + e*x^2)*Sqrt[q + c*x^2]*Sqr 
t[q - c*x^2]), x], x]] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] & 
& GtQ[a, 0] && LtQ[c, 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3994
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*( 
x_)])^(n_), x_Symbol] :> Simp[d^(2*IntPart[m/2])*((d*Sec[e + f*x])^(2*FracP 
art[m/2])/(b*f*(Sec[e + f*x]^2)^FracPart[m/2]))   Subst[Int[(a + x)^n*(1 + 
x^2/b^2)^(m/2 - 1), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, 
n}, x] && NeQ[a^2 + b^2, 0] &&  !IntegerQ[m] && IntegerQ[n]
 
3.7.4.4 Maple [B] (warning: unable to verify)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 7346 vs. \(2 (369 ) = 738\).

Time = 30.43 (sec) , antiderivative size = 7347, normalized size of antiderivative = 18.55

method result size
default \(\text {Expression too large to display}\) \(7347\)

input
int((d*sec(f*x+e))^(5/2)/(a+b*tan(f*x+e)),x,method=_RETURNVERBOSE)
 
output
result too large to display
 
3.7.4.5 Fricas [F]

\[ \int \frac {(d \sec (e+f x))^{5/2}}{a+b \tan (e+f x)} \, dx=\int { \frac {\left (d \sec \left (f x + e\right )\right )^{\frac {5}{2}}}{b \tan \left (f x + e\right ) + a} \,d x } \]

input
integrate((d*sec(f*x+e))^(5/2)/(a+b*tan(f*x+e)),x, algorithm="fricas")
 
output
integral(sqrt(d*sec(f*x + e))*d^2*sec(f*x + e)^2/(b*tan(f*x + e) + a), x)
 
3.7.4.6 Sympy [F]

\[ \int \frac {(d \sec (e+f x))^{5/2}}{a+b \tan (e+f x)} \, dx=\int \frac {\left (d \sec {\left (e + f x \right )}\right )^{\frac {5}{2}}}{a + b \tan {\left (e + f x \right )}}\, dx \]

input
integrate((d*sec(f*x+e))**(5/2)/(a+b*tan(f*x+e)),x)
 
output
Integral((d*sec(e + f*x))**(5/2)/(a + b*tan(e + f*x)), x)
 
3.7.4.7 Maxima [F]

\[ \int \frac {(d \sec (e+f x))^{5/2}}{a+b \tan (e+f x)} \, dx=\int { \frac {\left (d \sec \left (f x + e\right )\right )^{\frac {5}{2}}}{b \tan \left (f x + e\right ) + a} \,d x } \]

input
integrate((d*sec(f*x+e))^(5/2)/(a+b*tan(f*x+e)),x, algorithm="maxima")
 
output
integrate((d*sec(f*x + e))^(5/2)/(b*tan(f*x + e) + a), x)
 
3.7.4.8 Giac [F]

\[ \int \frac {(d \sec (e+f x))^{5/2}}{a+b \tan (e+f x)} \, dx=\int { \frac {\left (d \sec \left (f x + e\right )\right )^{\frac {5}{2}}}{b \tan \left (f x + e\right ) + a} \,d x } \]

input
integrate((d*sec(f*x+e))^(5/2)/(a+b*tan(f*x+e)),x, algorithm="giac")
 
output
integrate((d*sec(f*x + e))^(5/2)/(b*tan(f*x + e) + a), x)
 
3.7.4.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(d \sec (e+f x))^{5/2}}{a+b \tan (e+f x)} \, dx=\int \frac {{\left (\frac {d}{\cos \left (e+f\,x\right )}\right )}^{5/2}}{a+b\,\mathrm {tan}\left (e+f\,x\right )} \,d x \]

input
int((d/cos(e + f*x))^(5/2)/(a + b*tan(e + f*x)),x)
 
output
int((d/cos(e + f*x))^(5/2)/(a + b*tan(e + f*x)), x)